between non-H atoms involve $\mathrm{O}(23) \cdots \mathrm{C}(3)$ $[3.259(5) \AA]$ and $\mathrm{O}(24) \cdots \mathrm{C}(19)[3 \cdot 184(5) \AA]$; the closest such contact between non- H and H atoms is $2.45(6) \AA$ for both $\mathrm{O}(23) \cdots \mathrm{H}(3 b)$ and $\mathrm{O}(24) \cdots \mathrm{H}(19 c)$.

A packing diagram viewed down \mathbf{b} is available as supplementary material.

We are indebted to Drs George M. Brown and William R. Busing of the Chemistry Division of ORNL for the use of their diffractometer and to Drs George M. Brown, William R. Busing and John Burns for helpful criticisms of the manuscript. One of us (CHW) wishes to acknowledge the arrangement of financial support by Dr C. R. Richmond, Associate Director of ORNL.

References

Ashida, T., Pepinsky, R. \& Okaya, Y. (1963). Acta Cryst. 16. A48-A49.
Brown, G. M. \& Hall, L. H. (1977). Acta Cryst. B33, 2051-2057. Busing, W. R., Ellison, R. D., Levy, H. A.. King, S. P. \& Roseberry, R. T. (1968). The Oak Ridge Computer-Controlled X-ray Diffractometer. Report OR NL-4143. Oak Ridge National Laboratory, Tennessee.
Busing, W. R. \& Levy, H. A. (1957). Acta Crist. 10. 180-182.

Busing. W. R., Martin, K. O. \& Levy, H. A. (1962). orflS. Report ORNL-TM-305. Oak Ridge National Laboratory. Tennessee.
Busing. W. R.. Martin, K. O. \& Levy, H. A. (1964). ORFFE. Report ORNL-TM-306. Oak Ridge National Laboratory. Tennessee.
Cahn. R. S., Ingold. C. K. \& Prelog. V. (1956). Experientia, 12. 81-124.
Cahn. R. S.. Ingold. C. K. \& Prelog. V. (1966). Angew: Chem. Int. Ed. Engl. 5, 385-415.
Cromer, D. T. (1974). International Tables for X-ray Cyystallography; Vol. IV. pp. 149-150. Table 2.3.1. Birmingham: Kynoch Press.
Cromer. D. T. \& Waber. J. T. (1974). International Tables for X-ray Crystallography, Vol. IV. pp. 72-98. Table 2.2A. Birmingham: Kynoch Press.
Hamilton. W. C. (1959). Acta Crı'st. 12. 609-610.
Hamilton. W. C. (1965). Acta Cryst. 18. 502-510.
Johnson. C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory. Tennessee.
Klyne. W. \& Prelog. V. (1960). Experientia, 16. 521-523.
Levy. H. A. (1977). ORFFP3. Oak Ridge Fast Fourier Package. Oak Ridge National Laboratory, Tennessec.
Peterson. S. W. \& Levy. H. A. (1957). Acta Cry'st. 10. 70-76.
Shamma, M. (1967). The Alkaloids, edited by R. H. F. Manske. pp. 1-39. New York: Academic Press.
Shamma. M. \& Slusarchyk. W. A. (1964). Chem. Ret. 64. 59-79.
Shiono. R. (1971). Crystallographic Computing Program for IBM 1130. Tech. Rep. No. 49. Department of Crystallography. Univ. of Pittsburgh, Pennsylvania.
Wei. C. H. (1982). Acta Crist. B38. 548-553.
Wei. C. H. \& Einstein. J. R. (1984). Acta Cri'st. B40. 271-279.

Acta Cryst. (1984). C40, 1740-1742

2,3-Dihydro-1,4-diazepinium Picrate, $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{~N}_{2}^{+} . \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{7}^{-}$

By George Ferguson, Barbara L. Ruhl and Tadeusz Wieckowski

Chemistry Department, University of Guelph, Guelph, Ontario, Canada N1G 2W1

and Douglas Lloyd and Hamish McNab*

Department of Chemistry, Purdie Building, University of St. Andrews, St. Andrews, Fife KY16 9ST, Scotland
(Received 16 February 1984; accepted 30 May 1984)

Abstract

M_{r}=366 \cdot 8\), monoclinic, $\quad P 2_{1} / c, \quad a=$ 11.042 (3),$\quad b=8.224$ (3), $\quad c=15.113$ (3) $\AA, \quad \beta=$ $92.40(2)^{\circ}, V=1371 \cdot 1 \AA^{3}, Z=4, D_{x}=1.58 \mathrm{~g} \mathrm{~cm}^{-3}$, $\lambda($ Mo $K \alpha)=0.70926 \AA, \mu=1.3 \mathrm{~cm}^{-1}, \quad F(000)=672$, $T=293 \mathrm{~K}$, final $R=0.042$ for 1336 observed data. The crystal structure contains discrete diazepinium cations and picrate anions linked in chains by N $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds $[2.898$ (3), 2.777 (3) $\AA 1$. The cation contains a five-membered delocalized 1,5 -diazapentadienium chain $[\mathrm{N}(4), \mathrm{C}(5), \mathrm{C}(6), \mathrm{C}(7), \mathrm{N}(1)$; mean $\mathrm{C}-\mathrm{C} 1.382(8)$, mean $\mathrm{C}-\mathrm{N} 1 \cdot 306(9) \AA$ in a helical

^[* Present address: Department of Chemistry, University of Edinburgh, West Mains Road, Edinburgh. Scotland.]

conformation with $N(1)-0.059(3)$ and $N(4)$ 0.062 (3) \AA from the five-atom plane; the methylene atoms $C(2)$ and $C(3)$ are -0.399 (3) and +0.444 (3) \AA respectively from this plane. The picrate ring plane is planar but the nitro groups are inclined at 37.5 (3) and $25.6(3)^{\circ}$ (ortho) and $1.9(3)^{\circ}$ (para) to the ring. The picrate dimensions are consistent with significant contributions from a resonance form with an essentially normal $\mathrm{C}=\mathrm{O}$ bond.

Introduction. The 2,3-dihydro-1,4-diazepinium cation, present in compound (1), is of chemical interest (Lloyd, Cleghorn \& Marshall, 1974; Lloyd, 1975; Lloyd \& McNab, 1978) because it possesses a delocalized (c) 1984 International Union of Crystallography
vinamidinium system (Lloyd \& McNab, 1976) which is noteworthy because of its stability and tendency to take part in substitution reactions, and also because in this case the geometry of this system is relatively fixed since it is held in a ring. Chemical studies suggest that its reactions may be influenced markedly by small changes in the geometry and conformation brought about by substituent atoms or groups. For this reason a series of studies on the conformation of variously substituted 2,3-dihydro-1,4-diazepinium rings has been initiated and we report here the crystal and molecular structure of the title compound (1) containing the unsubstituted cation. Crystals of the corresponding perchlorate salt proved quite unsuitable for this and several related structure analyses, whereas the picrate salts have all yielded suitable crystals (Ruhl, Ferguson, Parvez \& Wieckowski, 1983).

(1)

Experimental. Yellow crystals, $0.25 \times 0.09 \times$ 0.38 mm , CAD-4 diffractometer, graphite-monochromatized Mo $K \alpha$ radiation, 25 reflections with θ in range $10<\theta<15^{\circ}$ used for measuring lattice constants; for data collection $2<\theta<25^{\circ}$ ($h 0$ to $14, k$ 0 to $10, l-19$ to 19$), \omega-2 \theta$ scans, ω-scan width $(0.60+0.35 \tan \theta)^{\circ}$; intensities of three reflections monitored every 100 min of exposure time showed no significant variation; Lp corrections, 3126 unique reflections, 1336 with $I>3 \sigma(I)$, where $\sigma^{2}(I)=S+$ $2 B+[0 \cdot 04(S-B)]^{2}, \quad S=$ scan count and $B=$ timeaveraged background count; there were very few reflections with $\theta>20^{\circ}$ hence the relatively low (42\%) observed:total reflection ratio; absorption correction not considered necessary. Structure solved with the aid of MULTAN80 segment (Main, Fiske, Hull, Lessinger, Germain, Declercq \& Woolfson, 1980) of the NRC Crystal Structure Package (Gabe, Larson, Wang \& Lee, 1981). Refinement by block-diagonal least-squares calculations on F, non-H atoms allowed anisotropic vibration, H atoms (from difference syntheses) refined isotropically. Final $R=0.042, R_{w}=0.032$ for 1336 observed data, $R=0.119$ for all data, $w=1 / \sigma^{2}(F)$, $S=3 \cdot 17$, maxima ± 0.1 e \AA^{-3} in final difference map, max. parameter shift/e.s.d. $=0.05$ for x of $N(4)$, mean shift/e.s.d. $=0.01$; atomic scattering factors from Cromer \& Mann (1968) and Stewart, Davidson \& Simpson (1965). Other computer programs used included XANADU (Roberts \& Sheldrick, 1975) and ORTEPII (Johnson, 1976).

Table 1. Final fractional coordinates and the mean $B_{\text {iso }}$ $\left(\AA^{2}\right)\left[=\frac{8}{3} \pi^{2}\left(U_{11}+U_{22}+U_{33}\right)\right.$ for non- H atoms and $8 \pi^{2} U_{\text {iso }}$ for H atoms $]$ for $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{~N}_{2}^{+} . \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{7}^{-}$with e.s.d.'s in parentheses

	x	y	z	$B_{\text {iso }}$
O(1)	$0 \cdot 2081$ (2)	$0 \cdot 1521$ (3)	0.6142 (1)	$4 \cdot 2$ (1)
$\mathrm{O}(2)$	$0 \cdot 2621$ (2)	0.3674 (4)	0.4846 (1)	6.8 (2)
$\mathrm{O}(3)$	0.1599 (2)	$0 \cdot 2948$ (4)	0.3689 (1)	6.8 (2)
$\mathrm{O}(4)$	-0.2743 (2)	0.3102 (3)	0.4039 (2)	5.6 (2)
$\mathrm{O}(5)$	-0.3461 (2)	0.1845 (3)	0.5168 (1)	5.5 (2)
$\mathrm{O}(6)$	-0.0804 (2)	0.0265 (3)	0.7593 (1)	$5 \cdot 8$ (2)
$\mathrm{O}(7)$	0.0988 (2)	-0.0515 (3)	0.7267 (1)	6.1 (2)
N(1)	0.3981 (2)	0.1183 (3)	$0 \cdot 1640$ (2)	$3 \cdot 7$ (2)
N(4)	0.6300 (2)	0.0278 (3)	0.2798 (2)	$3 \cdot 7$ (2)
$N(12)$	0.1717 (2)	0.3107 (4)	0.4492 (2)	$4 \cdot 2$ (2)
N(14)	-0.2621 (2)	$0 \cdot 2408$ (3)	0.4753 (2)	$4 \cdot 2$ (2)
N(16)	$0 \cdot 0052$ (2)	0.0255 (3)	0.7101 (2)	$4 \cdot 1$ (2)
C(2)	0.5102 (3)	0.0455 (4)	0.1374 (2)	4.0 (2)
C(3)	0.6204 (3)	$0 \cdot 1016$ (4)	$0 \cdot 1930$ (2)	3.6 (2)
C(5)	0.5434 (3)	$0 \cdot 0240$ (4)	0.3354 (2)	$3 \cdot 8$ (2)
C(6)	0.4245 (3)	0.0767 (4)	0.3227 (2)	4.1 (2)
C(7)	0.3635 (3)	0.1253 (4)	0.2459 (2)	$3 \cdot 9$ (2)
C(11)	$0 \cdot 1020$ (3)	0.1724 (4)	0.5847 (2)	$3 \cdot 0$ (2)
$\mathrm{C}(12)$	0.0726 (2)	0.2534 (4)	0.5017 (2)	2.9 (2)
C(13)	-0.0429 (3)	0.2758 (4)	0.4665 (2)	3.3 (2)
C(14)	-0.1386 (3)	0.2193 (4)	0.5132 (2)	$3 \cdot 2$ (2)
C(15)	-0.1216 (3)	$0 \cdot 1428$ (4)	0.5939 (2)	$3 \cdot 2$ (2)
C(16)	-0.0053 (3)	$0 \cdot 1170$ (4)	0.6269 (2)	$3 \cdot 0$ (2)
$\mathrm{H}(\mathrm{NI})$	0.348 (3)	0.180 (4)	0.120 (2)	7.9 (10)
$\mathrm{H}(\mathrm{N} 4)$	0.702 (2)	-0.016 (3)	0.296 (2)	5.7 (8)
H(21)	0.517 (2)	0.075 (3)	0.074 (2)	4.9 (8)
$\mathrm{H}(22)$	0.505 (2)	-0.075 (3)	0.140 (2)	4.9 (7)
H(31)	0.620 (2)	0.218 (3)	$0 \cdot 198$ (2)	3.8 (7)
H(32)	0.697 (2)	0.070 (3)	0.162 (1)	3.6 (7)
H(5)	0.567 (3)	-0.023 (4)	0.398 (2)	8.6 (10)
H(6)	0.377 (3)	$0 \cdot 088$ (4)	0.377 (2)	6.7 (9)
H(7)	0.283 (2)	0.163 (3)	0.250 (2)	5.0 (8)
H(13)	-0.050 (2)	0.327 (3)	0.411 (1)	$3 \cdot 2$ (6)
H(15)	-0.189 (2)	$0 \cdot 102$ (3)	0.622 (1)	$3 \cdot 1$ (6)

Discussion. Final fractional coordinates* with mean isotropic temperature factors are in Table 1. Table 2 contains molecular dimensions. Fig. 1 has views of the cation and anion with our numbering scheme. Fig. 2 shows the molecular packing.

The crystal structure contains diazepinium cations and picrate anions linked in chains along the a direction by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}\left[\mathrm{N}(1) \cdots \mathrm{O}\left(1^{1}\right) 2 \cdot 898\right.$ (3), $\mathrm{N}(4) \cdots \mathrm{O}\left(1^{\mathrm{ii}}\right)$ 2.777 (3) \AA] hydrogen bonds. The cations are stacked in the \mathbf{b} direction by operation of a twofold screw axis (Fig. 2). The picrate anions are associated in pairs about inversion centres with an interplanar spacing of $3.56 \AA$; other inter-ion contacts correspond to normal van der Waals interactions.

In the diazepinium cation (Fig. 1) the bond lengths of the $\mathrm{N}(4), \mathrm{C}(5), \mathrm{C}(6), \mathrm{C}(7), \mathrm{N}(1)$ system [mean $\mathrm{C}-\mathrm{C}$ 1.382 (8), mean $C-N 1.306$ (9) \AA] (Table 2) are consistent with a fully delocalized system and these atoms define a portion of a helix with $\mathrm{N}(4) 0.062(3)$, $C(5)-0.079$ (3), C(6) 0.003 (3), C(7) 0.073 (3) and $N(1)-0.059$ (3) \AA from the best plane through them.

[^1]These displacements correspond to torsion angles $\mathrm{N}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7) \quad 9.8(3)$ and $\mathrm{C}(5)-\mathrm{C}(6)-$ $\mathrm{C}(7)-\mathrm{N}(1) 7.9(3)^{\circ}$. The remaining two atoms of the seven-membered ring are -0.399 (3) [C(2)] and +0.444 (3) $\AA[C(3)]$ from the plane of the delocalized atoms, corresponding to an $\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{N}(4)$ torsion angle of $75.8(3)^{\circ}$. The cation thus has approximate twofold symmetry, with the twofold axis passing through $\mathrm{C}(6)$ and the $\mathrm{C}(2)-\mathrm{C}(3)$ mid-point. The ring valency angles at the N and $s p^{2}$-hybridized C atoms have been increased from the normal 120° to a mean value of $127.2(3)^{\circ}$ (Table 2). The $s p^{3}$-hybridized C atoms have $\mathrm{N}-\mathrm{C}-\mathrm{C}$ angles close to those anticipated [mean value $113.4(3)^{\circ}$].

The six-membered ring of the picrate anion (Fig. 1) is essentially planar [mean displacement 0.008 (3) \AA] and its dimensions $[\mathrm{C}(11)-\mathrm{O}(1) 1.247(3), \mathrm{C}(11)-\mathrm{C}(12)$ and $\mathrm{C}(11)-\mathrm{C}(16)$ mean 1.445 (4), other $\mathrm{C}-\mathrm{C}$ ring bonds mean 1.376 (4) \AA] are consistent with a major contribution from a resonance form as shown in (1) with the negative charge constrained to lie in the ring and an essentially normal $\mathrm{C}=\mathrm{O}$ carbonyl group. Similar observations have been made in other picrate ions (e.g. Palenik, 1972; Ferguson, Kaitner, Lloyd \& McNab, 1984).

We thank NSERC Canada for financial support.

Fig. 1. The cation and anion in $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{~N}_{2}^{+} \cdot \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{7}^{-}$with our numbering scheme.

Fig. 2. A stereoview of the crystal structure of $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{~N}_{2}^{+} . \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{7}^{-}$.

Table 2. Interatomic distances (\AA), bond angles $\left({ }^{\circ}\right)$, and hydrogen-bond geometry

(a) Bond lengths			
Anion			
$\mathrm{O}(1)-\mathrm{C}(11)$	$1.247(3)$	$\mathrm{N}(14)-\mathrm{C}(14)$	$1.468(4)$
$\mathrm{O}(2)-\mathrm{N}(12)$	$1.206(3)$	$\mathrm{N}(16)-\mathrm{C}(16)$	$1.466(4)$
$\mathrm{O}(3)-\mathrm{N}(12)$	$1.22(3)$	$\mathrm{C}(11)-\mathrm{C}(12)$	$1.446(4)$
$\mathrm{O}(4)-\mathrm{N}(4)$	$1.223(3)$	$\mathrm{C}(11)-\mathrm{C}(16)$	$1.443(4)$
$\mathrm{O}(5)-\mathrm{N}(14)$	$1.231(4)$	$\mathrm{C}(12)-\mathrm{C}(13)$	$1.373(4)$
$\mathrm{O}(6)-\mathrm{N}(16)$	$1.227(3)$	$\mathrm{C}(13)-\mathrm{C}(14)$	$1.376(4)$
$\mathrm{O}(7)-\mathrm{N}(16)$	$1.229(4)$	$\mathrm{C}(14)-\mathrm{C}(15)$	$1.378(4)$
$\mathrm{N}(12)-\mathrm{C}(12)$	$1.456(4)$	$\mathrm{C}(15)-\mathrm{C}(16)$	$1.376(4)$
Cation			
$\mathrm{N}(1)-\mathrm{C}(2)$	$1.447(4)$	$\mathrm{C}(2)-\mathrm{C}(3)$	$1.521(4)$
$\mathrm{N}(1)-\mathrm{C}(7)$	$1.312(4)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.388(5)$
$\mathrm{N}(4)-\mathrm{C}(3)$	$1.445(4)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$1.376(4)$
$\mathrm{N}(4)-\mathrm{C}(5)$	$1.299(4)$		

(b) Bond angles

Anion
$\mathrm{O}(2)-\mathrm{N}(2)-\mathrm{O}(3) \quad 122 \cdot 3$ $N(12)-C(12) \quad 120.6(2)$ $\mathrm{O}(3)-\mathrm{N}(12)-\mathrm{C}(12) \quad 117.1$ (3) $\mathrm{O}(4)-\mathrm{N}(14)-\mathrm{O}(5) \quad 124.6$ (2) $\mathrm{O}(4)-\mathrm{N}(14)-\mathrm{C}(14) \quad 117.8(3)$ $\mathrm{O}(5)-\mathrm{N}(14)-\mathrm{C}(14) \quad 117.7$ (3) $\mathrm{O}(6)-\mathrm{N}(16)-\mathrm{O}(7) \quad 122.9(3)$ $\mathrm{O}(6)-\mathrm{N}(16)-\mathrm{C}(16) \quad 118.8$ (3) $\mathrm{O}(7)-\mathrm{N}(16)-\mathrm{C}(16) \quad 118.3(3)$ $\mathrm{O}(1)-\mathrm{C}(11)-\mathrm{C}(12) \quad 123.0(3)$ $\mathrm{O}(1)-\mathrm{C}(11)-\mathrm{C}(16) \quad 125.2$ (3) $\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(16) \quad 111.8(2)$
Cation

$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(7)$	$124.6(3)$	$\mathrm{N}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$128 \cdot 3(3)$
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$113.2(3)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$129.3(3)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{N}(4)$	$113.6(3)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{N}(1)$	$129.1(3)$
$\mathrm{C}(3)-\mathrm{N}(4)-\mathrm{C}(5)$	$124.7(3)$		

(c) Hydrogen-bond geometry

(c) Hydrogen-bond geometry				
	$\mathrm{N} \cdots \mathrm{O}(\dot{\mathrm{A}})$	$\mathrm{N}-\mathrm{H}(\dot{\mathrm{A}})$	$\mathrm{H} \cdots \mathrm{O}(\dot{\mathrm{A}})$	$\mathrm{N}-\mathrm{H} \cdots \mathrm{O}\left({ }^{\circ}\right)$
$\mathrm{N}(1)-\mathrm{H} \cdots \mathrm{O}\left(1^{\prime}\right)$	$2.898(3)$	$0.99(3)$	$2.07(3)$	$140(3)$
$\mathrm{N}(4)-\mathrm{H} \cdots \mathrm{O}\left(\mathrm{l}^{1 i}\right)$	$2.777(3)$	$0.90(3)$	$1.99(3)$	$145(3)$

The superscripts refer to the equivalent positions: (i) $x, \frac{1}{2}+y$, $-\frac{1}{2}+z$; (ii) $1-x,-y, 1-z$.

References

Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Ferguson, G., Kaitner, B., Lloyd, D. \& McNab, H. (1984). J. Chem. Res. In the press.
Gabe, E. J., Larson, A. C., Wang, Y. \& Lee, F. L. (1981). The NRC Crystal Structure Package. National Research Council Laboratories, Ottawa, Canada.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee.
Lloyd, D. (1975). Chimia, 29, 311.
lloyd, D., Cleghorn, H. P. \& Marshall, D. R. (1974). adv. Heterocycl. Chem. 17, 1-26.
Lloyd, D. \& McNAB, H. (1976). Angew. Chem. 88, 496-504; Angew. Chem. Int. Ed. Engl. 15, 459-468.
Lloyd, D. \& McNAB, H. (1978). Heterocycles, 11, 549-562.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Palenik, G. J. (1972). Acta Cryst. B28, 1633-1634.
Roberts, P. J. \& Sheldrick, G. M. (1975). XANADU. Program for crystallographic calculations. Univ. of Cambridge, England.
Ruhl, B. L., Ferguson, G., Parvez, M. \& Wieckowski, T. (1983). Paper No. 14, 41st Annu. Pittsb. Diffr. Conf., Toronto, October 1983.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

[^1]: * Lists of observed and calculated structure factors, anisotropic thermal parameters, mean-plane data, selected torsion angles and bond lengths involving H atoms have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 39510 (26 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

